
Photo Minisci reaction: 3-liquid mixture reaction

Overview

The **Optim**Flow is particularly effective for 3-liquid mixture reactions, which require more complex adjustment of reagent supply timings and flow rates than 2-liquid mixture reactions. Simple input of concentrations and mixing ratios of prepared substrates and catalysts into the **Optim**Flow can start flow synthesis without complex calculations. With multiple experimental conditions input beforehand, the system automatically performs a series of reactions, significantly reducing the workload and time taken by experimenters. The **Optim**Flow is thus useful for library synthesis and determination of experimental conditions. Below is an example of 3 × 2 library synthesis.

Preparation of Reagents

Reagent A1: (-)-quinine **1a** (130 mg, 0.40 mmol) was dissolved in DMSO (2 mL) and received nitrogen gas injection for about 3 min.

Reagent A2: (-)-cinchonidine **1b** (117 mg, 0.40 mmol) was dissolved in DMSO (2 mL) and received nitrogen gas injection for about 3 min.

Reagent A3: (-)-dihydroquinine 1c (130 mg, 0.40 mmol) was dissolved in DMSO (2 mL) and received nitrogen gas injection for about 3 min.

Reagent B1: (1,3-dioxoisoindolin-2-yl)cyclohexanecarboxylate 2a (131 mg, 0.48 mmol) was dissolved in DMSO (4 mL) and received nitrogen gas injection for about 3 min.

Reagent B2: Similarly, (1,3-dioxoindolin-2-yl)adamantane-1-carboxylate 2b (156 mg, 0.48 mmol) was dissolved in DMSO (4 mL) and received nitrogen gas injection for about 3 min.

Reagent C: 4CzIPN(2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile) (6.3 mg, 0.008 mmol) as a photocatalyst and trifluoroacetic acid (61 µL, 0.80 mmol) were dissolved in DMSO (4 mL) and received nitrogen gas injection for about 3 min.

Device Setup

Line 1, System C ver. 3.1; Line 2, System C ver. 3.1; Line 3, System B

BPR = 0.5 MPa, the 3-reagent mode with two T-shaped mixers connected

with a shortest possible PTFE tube (with an inner diameter of 0.5 mm and a length of about 3 to 4 cm).

Reactors

A bundle of PTFE tubes (each with an inner diameter of 0.5 mm, a length of 10 m, and a capacity of 1.98 mL) was placed in a PhotoRedOx Box (HepatoChem, Inc.) and set in the **OptimFlow**. The light source used was an LED lamp (30 W, 450 nm).

Fraction Collector

In each experiment, the reaction solutions were collected together in a test tube with the Pre Stream Ratio set to 20% and the Post Stream Ratio to 30%.

Experiment

The parameters for each experiment were set as shown in the software input example (Experimental parameter). The reaction time (Residence Time) was 5 min, and the reference amount of Reagent A (Volume of Reagent 1) was 300 μ L. The concentrations (0.20, 0.12, and 0.20 M) of the reagents after preparation were respectively input into Conc. of Reagents 1, 2, and 3. Equivalents (1.00, 1.20, and 1.00) of the reagents were respectively input into Mol Ratio of Reagents 1, 2, and 3.

For the Fraction collector, the Pre Stream Ratio was set to 20% and the Post Stream Ratio to 30%. To collect all reaction solutions in a test tube in each experiment, the Fraction Volume was set to 10000 μ L.

The flow rates, the amounts of reagents used, and the total amount of reaction solutions in the above settings can be viewed in the Calculated value tab.

Experimental parameter	Ca	lourated	value	Pro	cedure &	details					E E	xperimental parameter	Ca	curated v	/alue	Pro	cedure &	details				
	Expt.1	Expt2	Expt.3	Exot.4	Exot.5	Exot.6	Expt7	Expt.8	Expt.9	Expt.10 E			Expt,1	Exot.2	Expt.3	Exot.4	Ext5	Expt.6	Exot.7	Expt.8	Expt.9	Exot.10
eagent1	1A1 [*]	1A1 ¹	1A2 '	1A2 '	1A3 [•]	1A3 '	1A1	141	1A1	1A1 ·	Flo	w rate of PP-1 [mL/min]	0.099	0.099	0.099	0.099	0.099	0.099				
eagent2	2A1 *	2A2 '	2A1 *	2A2 '	2A1 *	2A2 '	241	241	2A1	2A1	Flo	w rate of PP-2 (mL/min)	0.198	0.198	0.198	0.198	0.198	0.198				
eagent3					E	E.		E.	·			w rate of PP-3 [mL/min]	0.099	0.099	0.099	0.099	0.099	0.099				
esidence Time (min)	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	1.0000	1.0000	1.0000	1.0000	. [m]	w rate of reactor1 L/min]	0,396	0.396	0,396	0,396	0.396	0,396				
olume Of Reagent1 [uL]	300	300	300	300	300	300	500	500	500	500		w rate of reactor2 L/min]										
onc.of Reagent1 (M)	0.20	0.20	0.20	0.20	0.20	0.20	0.50	0.50	0.50	0.50	Vo	lume of Reagent1 [uL]	300	300	300	300	300	300				
onc.of Reagent2 (M)	0.12	0.12	0.12	0.12	0.12	0.12	0.50	0.50	0.50	0.50	Vo	olume of Reagent2 (uL)	600	600	600	600	600	600				
onc.of Reagent3 (M)	0.20	0.20	0.20	0.20	0.20	0.20	0.50	0.50	0.50	0.50	Vo	lume of Reagent3 (uL)	300	300	300	300	300	300				
lolRatio of Reagent1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Ma	iin stream [uL]	1200	1200	1200	1200	1200	1200				
olRatio of Reagent2	1.20	1.20	1.20	1.20	1.20	1.20	1.00	1.00	1.00	1.00	Pre	e stream (uL)	240	240	240	240	240	240				
lolRatio of Reagent3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Por	st stream [ul.]	360	360	360	360	360	360				
re StreamRatio [%]	20	20	20	20	20	20	10	10	10	10	То	ita) collection Vol, [ul.]	1800	1800	1800	1800	1800	1800				
ost StreamRatio [%]	30	30	30	30	30	30	30	30	30	30												
raction Volume [ul.]	10000	10000	10000	10000	10000	10000	1000	1000	1000	1000												
et BPR (MPa)	0.5	0.5	0.5	0.5	0.5	0.5	0,1	0.1	0.1	0,1												
oper Limit of Pressure (MPa)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50 ·	8											
nable Disable C	Сору	Paste				Can	cel	Co	onfiguratic	n .								Can	cel E		Configurati	on i
• Restation 9	12 B A	21 10 4	i 🗉 👌 🕯	3 11	8					~ G = 0 100 R	11 A	• Replaced 0	·= e 🔺	H = 6	E .) 🕃 🐖 1	8					~ 4 • 0 m

After the reactions, 5 μ L of each resulting reaction solution was diluted with 200 μ L of DMF and analyzed with a UHPLC-MS. The conversion ratio was calculated as the ratio to the product 3 and an unreacted raw material 1 using area normalization with the ELSD area value.

1a : Qu run	Sub2:R3	3 (%)	1 (%)	2 (%)	Conv. (%)
1	c-Hex 2a	45	35	19	56
2	ADA 2b	69	16	-	81

1c : Dihydroquinine R1=MeO, R2=Et

run	Sub2:R3	3 (%)	1 (%)	2 (%)	Conv. (%)
5	c-Hex 2a	37	38	22	49
6	ADA 2b	63	17	18	79

1	1b : Cinchonidine R1=H, R2=vinyl											
	run	Sub2:R3	3 (%)	1 (%)	2 (%)	Conv. (%)						
	3	c-Hex 2a	25	47	25	35						
	4	ADA 2b	38	28	33	58						