Automated Peptide Solid-phase Synthesizer ## Feature 1 Parallel synthesis of up to eight peptides Eight types of peptides can be synthesized at a time to reduce loss of time for reactions. One to eight synthetic lines are selectable. ## Feature 2 High-speed reaction and cleaning cycles with syringe pumps Eight syringe pumps perform suction and discharge for efficient reaction and cleaning. ## Feature 3 Customizable reaction conditions and cycles Reaction conditions can be changed and saved, which enables easy switching between preset conditions. ## Feature 4 Low cost and accessible entry model An ideal entry model with necessary functions at low price. ### **Rack Arrangement** #### Piperidine For piperidine containers Up to 8 containers #### Reaction tube and shaker For reaction vessels for forming peptides Shaking and heating Draining by a vacuum pump ## Cleaning port For needle cleaning ### Condensing agent For two types of condensing agent Up to 8 bottles for each type of condensing agent #### Amino acid 20 bottles of amino acids per line Up to 160 bottles in all lines # Software The main screen displays various settings, operations, and processes. - A Operating Buttons - **B** Parameter Settings - C Selecting File to Run - Manual Operation - **E** Process Review Parameter settings are divided into four steps: basic setting, cleaning, coupling, and common setting, to provide a clear picture of each step. | 100 | 107 10 106 146 | NATE 100 | Table 18 Solid Fall | |---------------|--|--|-------------------------| | Basic Setting | Cleaning | Coupling | Common Setting | ## Specifications Expt.Para | | 6-Line | 8-Line | |-------------------------------------|-----------------------------|-----------| | Model | OH-SP-1-6 | OH-SP-1-8 | | Standard Synthesis Time | Approx. 1 hour/cycle | | | Synthesis Scale | 10–50 μmol/line | | | Number of Amino Acids | 20 (10 for double coupling) | | | Power Supply | AC 100 V/900 W | | | Dimensions (Width × Depth × Height) | 550 × 590 × 560 mm | | ## DFC Co., Ltd. / Device for FlowChemistry 611-0033 Uji Venture Business Incubation Factory (Uji VFI) Building 2 1-25 Nishinohata, Okubo-cho, Uji-shi, Kyoto MAIL info@dfc-kyoto.co.jp URL https://dfc-kyoto.co.jp #### (Business Description) • Development and sales of laboratory equipment #### Fields of Expertise - Flow chemistry - Liquid chromatography and HPLC - Laboratory equipment for other applications